ECE 285 Final Project Report: Semantic
Segmentation Using U-Net

Patrick Youssef
Computer Science and Engineering
A13860272

Abstract

In this report we’ll go over some foundational techniques used for semantic segmen-
tation using Convolutional Neural Networks (CNNs). After covering some recent,
we will implement a well-know model and present results and improvements. In
particular we will implement a U-Net [4]] model and improve the performance
modern techniques such as batch norm and transfer learning. At the end of the
paper I will train the model on the CityScapes dataset [1]] and present the results.

1 Introduction

The utility of solving the semantic segmentation problem has a strong impact on the autonomous
vehicle sector among other ones. At it’s core, the problem is classifying individual pixels of an
input image to define fine boundaries between object types. This can be useful in defining free
space in a scene, develop an understanding of a scene, or other such tasks that require higher fidelity
understanding of object position. When reviewing modern deep learning principles it is obvious that
a convolutional neural network is the obvious tool to solve this, but that doesn’t define the model.

Given the prior, I will implement a model based on the works done in "U-Net: Convolutional
Networks for Biomedical Image Segmentation" [4]] and train it on the CityScapes dataset [1]] to see
how well it performs. In addition, I will be modifying the base model with some more modern
augmentations and see the performance implications. Due to hardware constraints [have made some
dataset modifications which I detail later.

2 Related Work

There are multitudes of methods in the modern era for attempting the semantic segmentation problem
but I want to focus on the relationship between U-Net and Fully Convolutional Networks (FCN) [3].
I consider the U-Net as an advancement of the base FCN model for a few reasons.

* Multiple Decoders: U-Net has a chain of decoders as opposed to the one decoder convolu-
tion in FCN.

* Concatenation vs Summation: In improved FCN variants with skip connections, prior
feature layers are added to later layers which may maintain feature dimensions but does not
maintain all the original information. In U-Net, prior feature maps are concatenated with
decoder features to maintain all information.

From my reading, it seems like the space of semantic segmentation models has gotten much more
complicated but generally keeps base inspiration from the methods of both of these models. As U-Net
seems like a progression of FCN, I opted to implement that model.

3 Method

As mentioned prior I opted to implement a U-Net [4] as my base model for this problem. Let’s first
formalize the problem of semantic segmentation before we can discuss how the model solves it.

3.1 Problem Statement

Semantic segmentation is the problem of predicting classes for each pixel of an input image. Given
an image of [H, W, C (where C is the number of channels) the goal is predict class scores over each
pixel. The result is a matrix of size [H, W, N¢jasses|- To convert the class scores into a resulting
segmentation of size [H, W, 1] we assign the class with the highest score to each pixel using argmax
along the class dimension. At this point we have a format that is similar to the ground truth for
supervised learning. Generally speaking our model is a function such that:

f(Image [H, W, C]) — Class Scores [H, W, Njgsses]

200

400

600

800

1000

0 250 500 750 1000 1250 1500 1750 2000
Figure 1: Example segmentation from the CityScapes dataset.

One of the difficulties of this problem when considering supervised learning is how to attain the
ground truth segmentation. Unlike classification, obtaining the ground truth segmentation requires
decently precise masks to be manually applied. This is one reason that segmentation datasets often
can be smaller. That being said, when selecting a dataset we need to ensure that the quality of the
segmentation masks provided are good.

3.2 Model Architecture

As mentioned prior I opted to implement a U-Net architecture. The skipped connections and multi-
level feature maps heavily improved the performance of this model as compared to prior models. This
model is by no means state of the art, but many of the core principles of the improved performance
from this model have extended into modern models. Figure [shows the base architecture that T will
implementing as from the original paper. We can consider the model as 2 distinct components:

3.2.1 Encoder

The purpose of the encoder in the U-Net is to encode the original image into multiple-level feature
maps that are later used to compute the final segmentation. In particular, the U-Net has distinct blocks
in the encoder, each with 2 convolutional layers. After each block, the representation is saved for the
decoding step and is max-pooled for the next encoder block.

3.2.2 Decoder

The purpose of the decoder is to upsample the encoded features into the final segmentation. Similarly
to the encoder, the decoder has distinct blocks composed of a series of convolutions that result in the
final class scores. In particular, each decoder block starts with a transpose convolution that decreases
the channel count but doubles the feature map dimensions which over time leads to the original image
size. Next, prior features from the encoder are concatenated with the transposed results and passed

128 64 64

output
~| segmentation
 map

=»conv 3x3, ReLU
copy and crop
¥ max pool 2x2
4 up-conv 2x2
= conv 1x1

Figure 2: U-Net architecture from the original paper.

through 2 convolutional layers for further decoding. This is repeated through all prior features until
we have a feature map of the same size as the original image, but with as many channels as there are
classes. This can easily be reduced into the class predictions through an argmax.

3.2.3 Modifications

Although the original model clearly defines the layers used in all components, I opted to make some
changes to simplicity and improvements. I will cover these in more detail later on but to mention
them here:

* Modified the encoder architecture to implement VGG-19 pre-trained encoder layers.

* Opted to use padded convolutions rather than valid convolutions to maintain a consistent
feature map size on each level.

* Added batch norms to improve training rate and performance [2].

The exact details of how the model is implemented is detailed in the code but I will give an overview
of the layer composition for my modified U-Net. Note that the layer labeling in Table[T|follows the
same scheme as from the original VGG paper [5] where the number after conv is the kernel size and
the second value is the output channel count. All convolutions also have a batchnorm applied after so
that is not listed here for the sake of brevity. Unless stated otherwise all other aspects of the base
U-Net are as detailed in the original model. Feature map size is for a 128x128 image, and feature
map size are for when the feature are saved (directly after convolution and ignoring pooling until
further convs). Given that I am using padded convolutions to maintain consistent feature maps sizes
on each level it’s quite easy to infer the dimensionality of the decoder blocks. For this reason I will
not be detailing them for the sake of brevity.

4 Experiments

In this section, I will cover my implementation, training, and results. Alongside the initial results I
will also cover changes that I made to improve the performance and some data size testing. To start, |
trained a base U-Net with a nearly identical structure to that of the original and a pre-trained variant
that I detailed prior.

4.1 Dataset Used

As segmentation has seen a lot of utility in the autonomous vehicle sector I decided it would be
fitting to use the CityScapes dataset [1]] of typical driving scenes. The dataset contains frames from a
car-mounted camera driving around in 6 different cities (Berlin, Bielefeld, Bonn, Leverkusen, Mainz,
and Munich). Alongside the base images finely annotated object class images are also provided with
35 class descriptions. I did make some changes to the dataset which I will detail below.

Block Name Layers Pre-Trained | Feature Map Size
Encoderl conv3-64 Yes
conv3-64 Yes [64, 128, 128]
Encoder? conv3-128 Yes
conv3-128 Yes [128, 64, 64]
conv3-256 Yes
Encoder3 conv3-256 Yes
conv3-256 Yes
conv3-256 Yes [256, 32, 32]
conv3-512 Yes
Encoder4 conv3-512 Yes
conv3-512 Yes
conv3-512 Yes [512,16,16]
conv3-512 Yes
Encoders conv3-512 Yes
conv3-512 Yes
conv3-512 Yes
conv3-1024 No [1024, 8, 8]

Table 1: Overview of pre-trained encoder structure.

4.1.1 Class Reduction

Table 2| details the class reduction that I implemented as the original 35 classes were not performing
well.

New Classes Included Base Classes
void unlabeled, ego vehicle, rectification border, out of roi, static, dynamic, ground
flat road, sidewalk, parking, rail track
construction building, wall, fence, guard rail, bridge, tunnel
object pole, polegroup, traffic light, traffic sign
nature vegetation, terrain
sky sky
human person, rider
vehicle car, truck, bus, caravan, trailer, train, motorcycle, bicycle, license plate

Table 2: Class reduction overview

4.1.2 Image Size Reduction

Due to memory constraints and training time on my hardware I opted to square crop and resize the
input images to 128x128 with a batch size of 32.

4.1.3 Input Transforms

To help with training and to meet the needs of the pre-trained model I performed some transforms on
the input data before training.

* Crop and Resize: To streamline cropping and resizing I made a custom transform using
PIL that can be applied with the typical PyTorch loader transforms.

* Scaling: Input images were scaled to a range of [0, 1]

* Mean and STD Centering: The pre-trained model was trained on ImageNet so I need to
match the mean and standard deviation of their dataset.

4.1.4 Ground Truth Transforms

Alongside the input transforms I also had some applied to the ground truth segmentations.
* Crop and Resize: Same crop and resize as with the input so that dimensions match.
* Class Reduction: The class relabeling was done as another custom transform.

4.2 Training

For training, a subset of 3000 images was used to train the model. To manage overfitting I compute
the validation loss every few training batches and keep track of this on TensorBoard. If a validation
loss outperforms the prior best a model checkpoint is saved and the best loss model is used for testing.

4.2.1 Optimizer

After a lot of testing I opted on using the Adam optimizer with no weight decay and a decaying
learning rate as detailed in Figure[3] This decay was the result of a decay rate of 0.95 applied on each
epoch. As we are trying to predict the correct class of each pixel, this is a large scale classification
problem well suited to using cross entropy loss.

0 5 10 15 20 25 30 35 40

Figure 3: Learning rate vs Epoch

4.3 Initial Results

Here I will detail the results of my testing on the base model architecture with minor modifications as
well as my VGG-19 pre-trained variant.

4.3.1 Losses

As I mentioned, I initially trained two variants of the U-Net (base and VGG-19 variants). The loss
curves that you see in Figure 4] show the results for both the models with the pre-trained variant
greatly outperforming the base. Note that the x axis is not indicative of anything in particular as it’s
merely the count of updates performed to each variable.

4.3.2 Maetrics

Alongside the losses and images below I also opted to compute two valuable metrics for this type of
problem: mean pixel accuracy and mean intersection over union.

Model Metric Performance
Base Pixel Accuracy 0.635
ToU 0.243
. Pixel Accuracy 0.857
Pre-Train IoU 0.530

Table 3: Overview of metrics performance.

4.3.3 Example Segmentations

Below are example images that I selected to show the strengths and weaknesses of the performance
of this model. Additionally I present the best results from the pre-trained variant as well as the base

Loss Validation Loss
tag: Loss tag: Validation Loss

18 16
1.4 12
1 08
06 0.4
02 0
[
0 50 100 150 200 250

Figure 4: Pink: Base Model, Orange: Pre-Trained

variant. As you’ll see the pre-trained variant qualitatively outperforms the base model. Figure [5|are
the pre-trained results and Figure[6]are the base model results.

Input Image Ground Truth Predicted Error Mask

Figure 5: Best Pre-Trained Model Results

Input Image Ground Truth Predicted Error Mask

Figure 6: Best Base Model Results

4.3.4 Strength & Weaknesses

I want to discuss some of the strengths and weaknesses I’ve noticed from the grid of images. When I
refer to performance, I am looking at the pre-trained results.

Strengths:

* In bulk groups there is very little pixel misclassification. When looking at the road for
example the boundaries are relatively clean. The absolute position of boundaries is not
perfect but spurious misclassifications are minimal.

* Vehicles, buildings, and roads are classified to a very usable degree.

Weaknesses:

* Small objects are almost entirely lost. Small cars, signs, and people are almost completely
lost in the predictions and grouped into the surrounding class.

4.4 Dataset Size Testing

Alongside the base testing, I also opted to try training both of my models on a dataset half the size to
see what the implications of a smaller dataset are. This is especially interesting as segmented data
can be hard to gather, so if less data can give us similar results that would be great. As before I kept
track of the training and validation loss throughout training and composed collages of the results.

4.4.1 Losses

When looking at the impact of the smaller dataset we can see that the loss impact seems less severe
for the base model as compared to the pre-trained model. We can see an appreciable gap in both the
training and validation loss for the pre-trained models in Figure[7}

Loss Validation Loss
tag: Loss tag: Validation Loss
2.4 1.6
2
1.2
1.6 o
1.2 0.8
0.8
0.4
0.4 -
0 0
0 500 1k 1.5k 2k 25k 3k 3.5k 0 40 80 120 160 200 240

Figure 7: Pink (Base), Orange(Pre-Trained), Blue (Base Half Data), Cyan (Pre-Trained Half Data)

4.4.2 Metrics

As with the two prior models I computed the same metric on the half-data models as well. To my
surprise the results are not too different between the different data amounts. The IoU of the base
model on half of the data slightly outperforms the whole data set which is a surprise but it’s within
training margin of error in my opinion. Generally speaking it seems that the implications of a data set
reduction of this degree are much less severe than originally expected.

Model Metric Performance
Base Pixel Accuracy 0.634
IoU 0.239
Pixel Accuracy 0.635
Base Half ToU 0.243
. Pixel Accuracy 0.857
Pre-Train ToU 0.530
Pre-Train | Pixel Accuracy 0.832
Half ToU 0.530

Table 4: Overview of metrics performance.

4.4.3 Example Segmentation

Although the metric performance is not too different, the qualitative performance is very different for
the pre-trained model. We can see in the center image that the half model performs much worse than
the prior results that we’ve seen. This indicates that either that image was an outlier in the general
performance or that the metrics alone are not enough to explain the performance.

Input Image Ground Truth Predicted Error Mask

Figure 8: Best Pre-Trained Half Data Model Results

Ground Truth Predicted

Input Image Error Mask

Figure 9: Best Base Half Data Model Results

10

4.5 Improvements

There is always more to be improved in these types of problems, and although a modern model will
very likely improve the results there are changes that can be made to this work.

* Training on larger images: In my results the images were cropped to a fairly course
128x128 which can make it difficult to detect smaller features. I like to think about the
convolution kernel scanning across and how many respective feature values would correlate
to that object. For smaller objects this may only be 1-2 which can be difficult to keep track
of through the model, even with the skipped connections.

* Better Encoder: Although the pre-trained VGG encoder helped immensely, an encoder
similar to a ResNet-50 [5]] would improve the feature representation.

References

(1]

Marius Cordts et al. “The Cityscapes Dataset for Semantic Urban Scene Understanding”. In:
Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016.

Sergey loffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. 2015. arXiv: 1502.03167 [cs.LG].

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully Convolutional Networks for Semantic
Segmentation. 2015. arXiv: 1411.4038 [cs.CV].

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for
Biomedical Image Segmentation. 2015. arXiv:|1505.04597 [cs.CV].

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale
Image Recognition. 2015. arXiv: 1409.1556 [cs.CV].

11

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1411.4038
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1409.1556

	Introduction
	Related Work
	Method
	Problem Statement
	Model Architecture
	Encoder
	Decoder
	Modifications

	Experiments
	Dataset Used
	Class Reduction
	Image Size Reduction
	Input Transforms
	Ground Truth Transforms

	Training
	Optimizer

	Initial Results
	Losses
	Metrics
	Example Segmentations
	Strength & Weaknesses

	Dataset Size Testing
	Losses
	Metrics
	Example Segmentation

	Improvements

