
ECE 276A W21: PR2 Particle Filter SLAM
Patrick Youssef

University of California, San Diego
psyoussef@ucsd.edu

1 INTRODUCTION
In this paper we will discuss an approach to solving the simul-
taneous localization and mapping (SLAM) problem for a mobile
vehicle and attempt to understand the shortcomings of the given
implementation. Possible improvements will be suggested along
the way alongside the state of the current results.

1.1 Importance of SLAM
The problem of localizing a mobile robot within an unknown map
is one that has many novel uses in modern robotics. In many ap-
plications we don’t have the luxury of a predetermined map, but
the usage of landmarks and correspondence can help to maintain a
correct localization. A solution to this problem falls into the family
of problems called SLAM. A utility of this method is for navigation
and creation of a map for any unknown or changing space where a
map is either not available or needs to be updated realtime.

1.2 Summary of Approach
There are a variety of ways to solve this family of problems but we
are tasked to solve this using a particle filter for state prediction and
lidar correspondence for landmarks within the map. The process
of creating the map and maintaining a position within the map is
as follows:

(1) Initialize map with first lidar scan and start coordinate sys-
tem there.

(2) Initialize particles with the same state as the vehicle [0, 0, 0]
and equal weights.

(3) Predict the state of a set of dispersed particles and measure
the degree of correspondence of each particle against the
map up to the point.

(4) Normalize the weights of the particles such that the sum of
all weights is 1.

(5) Predict new robot state with a weighted average of the par-
ticle states.

(6) Update the map with a new prediction of the robot state
given the best approximation of state. Repeat 3-6.

2 PROBLEM FORMULATION
Here we will discuss more precisely the problem we are trying to
solve and the associated mathematical quantities that will help us.

2.1 Problem Statement
In this problem we are given sensor data from a mobile vehicle and
are tasked with predicting the state of the vehicle over time using
a map of its surroundings that we generate along the way. We are
given the data of 3 different sensors: a fiber optic gyroscope (FOG),
wheel encoder readings, and a front-scanning lidar.

2.1.1 Localization Problem. Localization deals with understanding
the position of a robot in a given map.

• Input: A given map𝑚 and a sequence of controls 𝑢
• Objective: Obtain a sequence of states 𝑥 of the robot’s path

2.1.2 Mapping Problem. Mapping deals with logging the land-
marks of a robot’s surroundings.

• Input: A sequence of states 𝑥 and observations 𝑧
• Objective: Obtain a map𝑚 of the robot’s surroundings

2.1.3 SLAM Problem. SLAM is doing both localization and map-
ping with a limited understanding of both.

• Input: A sequence of controls 𝑢 and observations 𝑧
• Output: A sequence of states 𝑥 and a map of surroundings𝑚

2.2 General Methods
Here I will discuss generally how you might solve the SLAM prob-
lem mentioned prior.

2.2.1 Bayes Filter. A particle filter is a Bayes Filter that has two
steps, a prediction step shown in equation 1 and an update step
shown in equation 2.

𝑝𝑡+1 |𝑡 (𝑥) =
∫

𝑝 𝑓 (𝑥 |𝑠,𝑢𝑡)𝑝𝑡 |𝑡 (𝑠)𝑑𝑠 (1)

𝑝𝑡+1 |𝑡+1 (𝑥) =
𝑝ℎ (𝑧𝑡+1 |𝑋)𝑝𝑡+1 |𝑡 (𝑥)∫
𝑝ℎ (𝑧𝑡+1 |𝑠)𝑝𝑡+1 |𝑡 (𝑠)𝑑𝑠

(2)

A particle filter is a special kind of bayes filter that does not
assume anything about the world.

2.3 Metrics
2.3.1 Lidar Correlation. This metric is used to determine a score
for how well a projected lidar set matches with a given map. This
is later used to determine scores for the particles based on lidar
projection from their state. It’s as follows:

𝑐𝑜𝑟𝑟 (𝑦,𝑚) =
∑
𝑖

I(𝑦𝑖 =𝑚𝑖) (3)

Where 𝑦 is the set of projections, 𝑚 is the map, and I is the
indicator function.

2.3.2 What I Would Like. Other than our intuition there is no real
way to check against the true path or true map. I would have liked
to have a ground truth path to gather an MSE of the filtered path.

2.4 Assumptions
2.4.1 Markov Independence. We assume Independence in the joint
distribution 𝑝 (𝑥0:𝑇 , 𝑧0:𝑇 , 𝑢0:𝑇−1).

𝐽𝑜𝑖𝑛𝑡 = 𝑝 (𝑥0)
𝑇∏
𝑡=0

𝑝ℎ (𝑧𝑡 |𝑥𝑡)
𝑇∏
𝑡=1

𝑝 𝑓 (𝑥𝑡 |𝑥𝑡−1, 𝑢𝑡−1)
𝑡−1∏
𝑡=0

𝑝 (𝑢𝑡 , 𝑥𝑡)

(4)

Patrick Youssef

3 TECHNICAL APPROACH
Here I will discuss in depth how the methods mentioned prior are
implemented to solve the particle filter SLAM problem.

3.1 Data Cleaning
A good first step is to process the data into a form that makes
this problem more tractable and allow for easier correspondence
between sensors. We’ll go through the step taken for each sensor’s
data.

3.1.1 Fiber Optic Gyroscope. The data from the FOG is in 𝑟𝑎𝑑\𝑠
which is not immediately useful to us. It’s also sampled 10x faster
than both the lidar and encoders. I chose to compute Δ𝜃 as 𝜏 ¤𝜃 and
summed the changes over every 10 samples to bring the samples
inline with the other sensors.

3.1.2 Wheel Encoders. Wheel encoders were more straightforward
than the FOG. Given 𝑡𝑖𝑐𝑘𝑠

𝑟𝑒𝑣 and the sample time it was easy to
compute 𝜏 and Δ𝑇𝑖𝑐𝑘𝑠 to determine the wheel linear velocity at
each sample time as:

¤𝑥 =
Δ𝑇𝑖𝑐𝑘𝑠 𝜋 𝐷𝑤ℎ𝑒𝑒𝑙

Δ𝜏 𝑇𝑃𝑅
(5)

3.1.3 Lidar. Lidar did not have much preprocessing as much of
the processing happens during the mapping steps. All I did was
reform the data structures here to be inline with how I present the
data from before.

3.1.4 Across All Sensors. Once I had all sensors cleaned up and
at the same sampling rate I trimmed the data such that I had the
largest data set where all sensors were sampled and times were
inline.

3.2 Dead Reckoning
Although dead reckoning is not necessary for the particle filter
SLAM, it’s a good step to build some intuition of the data and
many of the steps translate well into the SLAM predict step. The
integration steps done here are the base of updating the particle
states in the prediction step.

3.2.1 Motion Model. The motion model used to describe the rates
of the states of the vehicle is a differential drive model. The motion
model is as follows:

¤𝑋 =
[
𝑣 cos(𝜃), 𝑣 sin(𝜃), ¤𝜃

]
(6)

Where 𝑣 is the centerline velocity (average wheel velocity) and
theta is the heading of the robot.

3.2.2 Euler Integration. Once the rates were determined at each
time I compute the changes in the 3 states over each sample and
applied a cumulative sum to get the estimated state over time. The
changes were computed as an euler integration:

𝑋𝑡+1 = 𝑋𝑖 + 𝜏 ¤𝑋 (7)

where 𝑋 is a vector of states and ¤𝑋 are the state derivatives from
the motion model.

3.3 Particle Filter SLAM
Here we will go into detail about how the implementation for
particle filter SLAM was formed. I will relay the steps that map well
to function defined in my code that I determined as distinct steps
in this process.

3.3.1 Initialize Particles. First step taken is to initialize N particles
to the initial state of the vehicle [0, 0, 0] with weights of 1

𝑁
. As we

are not trying to localize the robot in a given map it does not make
sense to disperse the particles initially but to instead start them on
top of the robot.

3.3.2 Lidar Projection. This helper function makes it easier to
project the lidar scan into the robot coordinate system. it utilizes
the rotation and translation matrix as given by the geometry of the
robot. The primary equation used is:

𝑋𝑐𝑎𝑟 = 𝑅 𝑋𝑙𝑖𝑑𝑎𝑟 +𝑇 (8)

Where 𝑋𝑐𝑎𝑟 is the 3D coordinate of a lidar scan in the car coor-
dinates, 𝑅 is the rotation matrix from the lidar coordinates to the
car, 𝑋𝑙𝑖𝑑𝑎𝑟 is the position of the scan in lidar coordinates, and 𝑇 is
the translation from lidar to car.

3.3.3 Initialize Map. We initialize a map of all zeros and apply the
first lidar scan where endpoints increase the value in the grid by
4 and open space decreases the value of the grid by 4. The sign
conventions of these changes are based on applying a sigmoid to
the map later to determine the probabilities that a space if occupied.

3.3.4 Predict New Particle States. Here the particles are updated
to new states following the integrated motion model output at the
given time. The difference compared to dead reckoning is that we
add noise to disperse the particles around the dead reckoned state
to capture other possible states. The update for a given particle is
as follows:

𝑋𝑡+1 = 𝑋𝑖 + 𝜏 ¤𝑋 + N(0, 𝜎) (9)

As you can see, normal noise is added to the particles with a
different standard deviation for translational noise (𝑥 and 𝑦) and
rotational noise (𝜃).

3.3.5 Update Particle Weights. Here the particle weights are up-
dated with the aforementioned lidar map correlation metric. This
is done by applying the 𝑡 + 1 lidar scan to all particles and seeing
how well they correspond with the prior map. Weights are stored
as this correlation score with the particles.

3.3.6 Normalize Weights. For the following step, we need to nor-
malize the weights such that they sum to 1. This is done using the
softmax activation method as follows:

𝑊 =
𝑒𝑤𝑖∑𝑁
𝑗=1 𝑒

𝑤𝑗
(10)

Where𝑊 is the vector of weights for all particles being over-
written by the softmax activation over each prior weight (Note:
overwriting occurs after all new elements have been computed),
and 𝑁 is the number of particles.

ECE 276A W21: PR2 Particle Filter SLAM

3.3.7 Estimate Robot State. We now have a set of 𝑁 particles and
their respective weights. We approximate the new state of the robot
as a weighted average of the particle states. This is as follows:

𝑋𝑟𝑜𝑏𝑜𝑡 =

𝑁∑
𝑖=1

𝑋𝑖𝑊𝑖 (11)

We can now also compute the weighted variance of the estima-
tion as:

𝑉𝑎𝑟 =

𝑁∑
𝑖=1

(𝑋𝑖 − 𝑋𝑟𝑜𝑏𝑜𝑡)2𝑊𝑖 (12)

Note: The states and variance are vectors in the prior equations.

3.3.8 Update Map. This step is very similar to the initialize map
step but instead of a matrix of zeros we have the matrix of the prior
map. We apply the same ±4 with the current lidar scan applied
to the estimated robot state. To ensure we don’t get numerical
overflow and overly confident probabilities for cell occupancy we
cap the values of grid sums to ±100.

3.3.9 Resample. Lastly, if need be we resample the particles via
sample important resampling. This method repositions particles
relative to the weights of the prior particles. This way we focus our
efforts on particles that performed well.

3.3.10 Filter Map. The prior steps, starting with predict new parti-
cles, are repeated for the robot runtime but in post if you want to
save the map as probabilities you can apply the sigmoid function
to convert the log-odds grid sums to occupancy probabilities. This
is done as follows:

𝑝 (𝑚𝑖, 𝑗) =
𝑒𝑚𝑖,𝑗

1 + 𝑒𝑚𝑖,𝑗
(13)

Where𝑚𝑖, 𝑗 is the sum of a particular grid element. This normal-
izes the sums in the grid elements to probabilities that they are
occupied. This also explains why we start the matrix for the map
as all zeros. When passed into the sigmoid, grids of 0 would yield
𝑝𝑖, 𝑗 = 0.5. In other words, we are equally uncertain about whether
the grid space if occupied or not.

3.4 What is The Right Noise
Given that we apply a noise in the particle prediction step we
must determine what the correct amount of noise. I determined the
correct amount of noise by rationalizing the purpose of the noise
and looking at the data.

The noise is used to disperse the particles states to encompass
states that may be a better fit with the map than the dead reckoned
state. This can be due to sensor noise, motion model inaccuracies,
and other reasons that would make the dead reckoning incorrect.
Extending this idea, I applied noise that allowed me to encompass
a fairly small error band relative to the motion model state change.
Figures 1 and 2 below show the relative scale of the noise on the mo-
tion model state deltas. Table 1 lists the chosen standard deviations
for the noise addition.

3.5 Texture Mapping
Although I did not get to applying texture mapping to the code
stack, I wanted to discuss the means to applying this to my code.

3.5.1 What is Texture Mapping. Texture mapping is the process of
applying color to the endpoints of the lidar scans to colorize the
map. This can be done by matching the physical position of the
lidar scan to the object color from the camera view.

3.5.2 How to Match Points. To match points between the lidar
scans and the camera, we need to transform the data from each
to a common coordinate system. The most convenient coordinate
system for this is the robot coordinates. This is fairly trivial for the
lidar as you only need to apply the translation and rotation from the
given matrices, but for the camera you need to estimate depth and
use projective geometry to infer the world coordinates of the image

Figure 1: 𝑥 motion model deltas with noise

Figure 2: 𝜃 motion model deltas with noise

Table 1: Chosen Noise Standard Deviations

State Noise Std. Dev.

𝑥 0.002
𝑦 0.002
𝜃 0.00003

Patrick Youssef

points. Depth can be inferred from a disparity map on a stereo set
of calibrated images. Once you have brought both sensors into a
common coordinate system you merely need to match the points
from the lidar to the color of the matching image point and apply
said color to the map.

4 RESULTS
The results section serves to present the performance of the solution.
Note that there is a video of mapping done with the dead reckoned
path. My method for making the video could be applied to the
particle filter mapping easily but it’s quicker to produce the dead
reckoned video and proves the same idea.

4.1 Summary of Parameters
To reiterate, the parameters used moving into results are as follows
in table 2. Also the data was subset as the computation time was
extremely long for me and I wanted to ensure that the map crossed
over its own path at least once.

Table 2: Particle Filter Parameters

State Noise Std. Dev.

𝑥 0.002
𝑦 0.002
𝜃 0.00003

Number of Particles

𝑁 30
Grid Resolution

𝑑𝑥/𝑑𝑦 1 meter

4.2 Summary of Results
You will see more details moving forward but overall the particle
filter SLAM showed itself to outperform the dead reckoned MAP
due to its ability to correspond and correct relative to landmarks in
the map.

4.3 Dead Reckon
Here we will discuss the results of the dead reckoning for robot
state and how the applies when mapping.

4.3.1 Wheel Velocities. Figures 4 and 5 show the linear velocities
of the left and right wheels determined from the encoder readings.
Looking closer at figure 5 we can see that there is a short period
of incorrect velocity measurements where we see a velocity peak
higher than all the rest of the readings and almost instantly reduce
to nearly 0. This could be due to a wheel slip or other factors, but
these kinds of errors are why we need a filter.

4.3.2 Yaw Rates. For the robot yaw rate, it’s clear to use the better
catered sensor (FOG) to do the measurements, but I was curious to
see how different the measurements from a yaw rate determined
from the wheel velocities would be compared to the gyroscope.

When comparing the FOG yaw rate in figure 7 to the wheel deter-
mined yaw rate in 6 we can see that the aforementioned discontinu-
ity in velocity from figure 5 translates into a similar discontinuity
in the yaw rate estimate. Moving forward I will only use the FOG
yaw rate.

4.3.3 Wheel Velocities.

Figure 3: Left Wheel Velocity

Figure 4: Right Wheel Velocity

Figure 5: FOG determined yaw rate

ECE 276A W21: PR2 Particle Filter SLAM

4.3.4 Robot Path. The dead reckoned robot path is shown in figure
8. As we can see the path is actually quite good with just the dead
reckoned estimates.

4.3.5 Map. With the dead reckoned path we can apply the lidar
scans just like we would in the particle filter to get an impression
of what the map will look like. Figure 8 shows the result of this
lidar scan application.

4.4 Particle Filter
Moving into the particle filter, we have some other facets we can
looks at given how the approach varies from dead reckoning alone.

4.4.1 Map. As we can see in figure 9, the particle filter SLAM
based map is very similar to the dead reckon based map. We’ll dive
in deeper to see the differences in a following section but luckily
here we’re able to show the correct functionality of the particle
filter.

Figure 6: Wheel velocity determined yaw rate

Figure 7: Dead reckoned robot path

4.4.2 Particle State Variance. Given how we use a weighed average
of the particle states to determine the new robot state estimate, we
also can compute a weighted variance of the particle states. The
variance can be looked at as a metric of particle filter uncertainty as
the two cases where variance is low correspond to a good estimate.

• A few particles have large weights and are close to each other,
there is good consensus amongst a few strong particles.

• Most particles are distributed close to each other and have
similar weights, there is good consensus amongst many par-
ticles.

Figure 8: Map following dead reckoned path

Figure 9: Map from particle filter SLAM

Patrick Youssef

Figures 10, 11, and 12 show the states and variances for 𝑥 , 𝑦, and
𝜃 respectively. As we can see, it would seem like the variances for
𝑥 and 𝑦 hold pretty consistently which gives us confidence that the
estimated state is due to a good degree of consensus. 𝜃 on the other
hand does not seem to be holding as well, it may be due to too large
of noise for a relatively slow state change.

Figure 10: Estimated 𝑥 state over iterations with variance

Figure 11: Estimated 𝑦 state over iterations with variance

Figure 12: Estimated 𝜃 state over iterations with variance

4.5 Comparing Dead Reckoning and Particle
Filter

To appreciate the subtle differences between the map from the
particle filter SLAM and the dead reckon mapping I thought it
would be good to look closer at the maps to see the differences.
Figures 13 and 14 show that the particle filter is better able to track
back into the same path as when it first passed the road whereas
the dead reckon path shows signs of accumulated integration error
with no way to correct for it.

Figure 13: Map closeup from dead reckon mapping

Figure 14: Map closeup from particle filter SLAM

	1 Introduction
	1.1 Importance of SLAM
	1.2 Summary of Approach

	2 Problem Formulation
	2.1 Problem Statement
	2.2 General Methods
	2.3 Metrics
	2.4 Assumptions

	3 Technical Approach
	3.1 Data Cleaning
	3.2 Dead Reckoning
	3.3 Particle Filter SLAM
	3.4 What is The Right Noise
	3.5 Texture Mapping

	4 Results
	4.1 Summary of Parameters
	4.2 Summary of Results
	4.3 Dead Reckon
	4.4 Particle Filter
	4.5 Comparing Dead Reckoning and Particle Filter

