
ECE 276A W21

Patrick Youssef

PR 1
Recycle Bin Detection

2021-01-31

psyoussef@ucsd.edu

1 Introduction

In this paper we will discuss an approach to detecting US household recyling bins and attempt to understand
the shortcomings of the given implementation. Possible improvements will be suggested along the way
alongside the state of the current results.

1.1 Importance of Bin Segmentation

The problem of detecting the relative location of a
recycling bin has many novel uses in the modern span
of problems. More precisely, a solution such as this
one is immediately useful as part of the self-driving
car problem to detect and avoid obstacles on the road
such as these bins. Another possible utility could be
to enable autonomous pickup and tracking of these
bins for the cars that make their trips to empty them,
possibly yielding an expedited route time.

1.2 Introduction to Approach

The problem at hand has been solved with a variety
of tools to label, reject, and classify points within the
images but fundamentally the core of the solution lies
in the logistic regression used for classification of pixel
class. With the classified image from the regression,
all that is left to solve is bounding a box to the mask
given some geometric and spatial filters such as aspect
ratio.

2 Problem Formulation

2.1 Pixel Classification

2.1.1 Problem Statement

In this problem we are given labeled data with classes
as y ∈ {red, green, blue} or y ∈ {1, 2, 3} respectively.
We are tasked with classifying the test pixels into one
of the three classes.

2.1.2 Metrics

There is one metric of performance that will be used
which is accuracy defined as:

Accuracy =
1

N

N∑
i=1

I(ŷi, yi)

Where I is the indicator function, the functions is 1 if
both arguments are the same and 0 otherwise. The
hat on y implies the predicted classes and y is the
ground truth classes. Note, this accuracy is only really
important when evaluated on the test set.

2.2 Bin Detection

2.2.1 Problem Statement

In this problem we are tasked with establishing bound-
ing boxes for recycle bins in images. More is detailed
on the intermediate details and metrics in the techni-
cal approach but as an input:output scheme we are
concerned with just the bounding boxes from the input
image.

2.2.2 Metrics

Other than metrics used intermediately, such as pixel
classification accuracy, the primary metric of perfor-
mance is similarity of the ground-truth bounding
boxes and the predicted bounding boxes. This is cal-
culated as the intersection over union specified as:

IoU =
B̂ ∩B
B̂ ∪B

This is already implemented for us but IoU ≥ 0.5 is
considered a success.

3 Technical Approach

3.1 Pixel Classification

I chose to use logistic regression to first try and classify
one of three classes of pixels in the given data set of
{red, green, & blue} pixels. I mostly chose this method
due to my familiarity and enjoyment in working with
it. Let’s dive a bit deeper into how I formulated my
model.

I will talk mostly in regards to the fundamental math
behind logistic regression as compared to linear re-
gression and how the optimization is formulated.

3.1.1 Linear vs Logistic Regression

The simplest way to describe the difference between
two fundamentally similar models is when considering

University of California, San Diego 1



usage. Logistic regression has all of the forward prop-
agation as linear regression but induces a nonlinearity
using the sigmoid as shown in Figure 1.

Figure 1: Sigmoid Function

As we can see the function is bounded as y ∈ [0, 1]
which makes the output suitable for probabilities. This
lended itself well to classification with a decision
boundary at y = 0.5. The inverse is also true, lin-
ear regression is much better suited to prediction of
real-valued numbers.
Going back to our problem, logistic regression works
well as we will attempt to classify each pixel of the
image as belonging to a recycle bin or not. In the
first case of the basic classification we actually have a
multinomial logistic regression with a distinct logistic
regression for each class and the prediction is chosen
as the class that yields the highest probability.

3.1.2 Logistic Regression Predictions

So then, mathematically what does logistic regression
look like? Let us call a vector X to represent a matrix
of all of our sample inputs (1 sample = 1 pixel). If
we take the i-th row of X and dot it with vector W of
the same size (same number of features), we have the
start of linear and logistic regression. We also need to
shift the result by a bias that we will call b. This yields
for linear regression the following:

ŷi =WTXi + b

, and for logistic regression we apply the sigmoid func-
tion σ to yield:

ŷi = σ(WTXi + b)

where ŷ is the predicted value.
To further clarify, W is called the weight vector and
it can be thought of as mapping the relation or sensi-
tivity of the output to changes in particular features
of X. How does one determine the correct value of
W? That is done with a process called training using
the unconstrained optimization technique gradient
descent.

3.1.3 Gradient Descent Training Process

The process of training is fairly simple, we cannot
explicitly compute where the below derivative is all
equal to 0:

δL
δW

Where L is the loss function. The loss function gives
us a way of computing the performance of the weights

and bias on the training data set. For logistic regres-
sion a common loss function is:

L(W ) = − 1

N

N∑
i=1

log(pi) = −
1

N

N∑
i=1

log σ(yiWXi)

Important note: I find it simpler to append a 1 to
each row of X and increase the size of W by 1 to
handle the bias in the dot product as opposed to a
separate term.
Gradient descent follows a simple update rule that
uses the derivative and iterates to attempt to converge
to a minimum of the loss function. Knowing the deriva-
tive of the aforementioned loss function we get the
update rule:

Wi+1 ←Wi − α
−1
N

N∑
i=1

log σ(−yiWXi)yiXi

Where α is a hyper-parameter called the learning rate
that is tuned to increase the speed of learning but also
meter unstable convergence.

3.1.4 Feature Engineering

As we would expect glare and other factors to affect
the color of the pixels in the recycle bin images I pre-
emptively added the HSV color space to the features
for all pixels. HSV helps because even for a washed
out region the value of the pixel can represent a blue
pixel that is near 0 saturation. Looking at a particular
sample (let’s say the i-th sample) the features would
be:

R G B H S V 1

Where the 1 is so that the last weight in W can be the bias.

3.1.5 Performance on TriColor Set

Using the given labeled data set with three classes I trained
3 individual logistic regressions, one for each class, and
presented below is the training curve for the blue pixels.

Figure 2: Training curve for the tricolor set

As we can see the accuracy is great, given this we will use
this framework moving forward for the bin pixel classifica-
tions. We now just need the examples for X and y to train
and test the model.

University of California, San Diego 2



3.2 Recycle Bin Data Acquisition
For the prior dataset, we were given the examples and their
labels, but for the bin classification we only have images
that may or may not contain the bins that we are trying to
detect.
Using the given code for roipoly, I added some small tweaks
that allowed me to quickly build a labeled set of pixels from
the images. I used the mask from roipoly to separate pixels
for which yi = 1 and those that are not recycle bins. To
ensure that the data was well separated, I scattered data for
yi = 1 and yi = 1 and made a collage of the pixels. We get
the following:

Figure 3: Collage of recycle bin pixels.

Figure 4: Collage of non recycle bin pixels.

As we can see there is a clear separation between the two
sets, and we are in good shape to proceed with training with
our prior framework.

3.3 Bin Color Training
There is not much to say here except that the results from
training against the image shown in the collages is good.
One change that was made from the prior framework was
to use stochastic gradient descent (SGD). With such a large
dataset, computing the gradient over all samples can be
expensive. With SGD you randomly sample a smaller set on
each iteration so that you progress through training faster
and over many iterations sample the entire set. This is why
we see a dramatic oscillation on the training set accuracy
as the training set computed is merely the particular subset
from the SGD on each iteration.

Figure 5: SGD training of bin pixel classification.

3.4 Bin Color Classification

Using the prior data set, I trained a single logistic regression
to classify the pixels in the image. Recall that the predicted
value from a logistic regression is a probability so we in-
troduce a hyper-parameter to tune: image-threshold. This
threshold determines the decision boundary for what is a
recycle bin or not, we will tweak this later. Below if an
example image with it’s probabilities and example bounding
boxes.

3.5 Bounding Box Placement

In terms of the bounding boxes it was fairly simple to im-
plement. With the binary mask image like that of Figure
7, I merely needed to apply some filtering to improve the
rejection of false positives and separate local matches. There
were three main filter utilized that were tuned:

• Eroding: Before fitting a bounding box I used an ero-
sion to attempt to separate lightly grouped boxes such
as those in the figures ahead.

• Minimum Area: I imposed a minimum area required
as to reject small groups across the mask.

• Aspect Ratio: After fitting the boxes, I check to see if
they are within a range of aspect ratios.

Figure 6: Original image of bins.

University of California, San Diego 3



Figure 7: Probability image of prior image.

Figure 8: Bounding box on masked binary image.

4 Results

The results section serves to present the performance of the solution, but more importantly to identify failure
modes and issues that may need further work.

4.1 Pixel Classification

4.1.1 Summary of Results

Across the 3 classes of validation data I locally scored
100% accuracy. When uploaded to gradescope for the
test set we see a slightly lower overall accuracy of
98.8% which is still very good.

4.1.2 Final Parameters

Below are the 7 weights for the 3 class-specific logistic
regressions. Note again, W7 is the bias.

W1 W2 W3 W4 W5 W5 W7

9.08 -5.02 -4.78 -0.09 -2.46 -1.35 -1.08
-5.48 8.65 -4.4 -1.14 -2.47 -1.43 -1.24
-5.5 -4.32 8.52 1.34 -2.43 -1.4 -1.31

4.2 Bin Detection

4.2.1 Summary of Results

After the gradescope submission, we see a score on the
validation set of 7.75 which indicates that we have some
mistakes. I will try to detail what I believe are some possibil-
ities as to why there were false positives or false negatives.

4.2.2 Final Parameters

Below are the 7 weights for the single class logistic regres-
sion. Note again, W7 is the bias.

W1 W2 W3 W4 W5 W5 W7

-0.74 -0.32 0.92 0.97 1.54 0.58 -0.17

LR Epochs Weight Decay Threshold Disk Size

0.15 150 0.001 0.63 4

4.2.3 Example Segmentations

We cover plenty of issues regarding segmentation and have
prior shown successful segmentations, so I will not repeat

additional examples here.

4.2.4 Threshold Tuning

One of the important hyper-parameters is the classification
threshold. Increasing this reduces the number of pixels clas-
sified as recycle bins which can help reject false positives
but too high and you can lose the bin in the mask.

Figure 9: Example image for thresholding.

Figure 10: Example image for threshold = 0.63

University of California, San Diego 4



Figure 11: Example image for threshold = 0.55

As we can see with a more aggressive threshold we lose out
on some of the detail and the bounding box is forced to be
inset from the edge of the bin. For any particular image we
can tune the threshold but we have to remember that we
are looking to maximize the accuracy across all images and
this image was an outlier.

4.2.5 Erosion Tuning

Another important hyper-parameter is the radius of the ero-
sion applied to the image before finding the bounding boxes.
Images with bins that are close to each other will often have
small interconnects that force one larger bounding box or
worse rejection of both. It’s important to erode away the
connection but often with too much erosion you can have
similar issues to that of threshold tuning where the bounding
box is inset.

Figure 12: Example image for erosion tuning.

Figure 13: Example image for erosion disk = 4

Figure 14: Example image for erosion disk = 2

In the above examples, we can see that the difference be-
tween an erosion disk of 2 and 4 completely changes the
state of the bounding box, but with too much erosion it can
destroy the quality of the individual boxes.

4.2.6 False Positives

Across the set it’s likely to have false positives with simpler
filters. Given my filters, there are cases where the disk radius
could cause false positives. Below is one example:

Figure 15: Example image for erosion tuning.

Figure 16: Example image for erosion disk = 4

University of California, San Diego 5



Figure 17: Example image for erosion disk = 2

With a disk of radius 2 (which helped for other cases) the
doorway is a false positive. One way to improve the accu-
racy is to improve the filters as shown here but that was not
implemented here.

4.2.7 Bounding Box Coordinates

Img MinR MinC MaxR MaxC
0061 180 107 314 300
0062 228 184 413 499
0062 22 345 137 499
0063 173 96 266 226
0064 346 108 464 272
0065 751 415 932 621
0066 NA NA NA NA
0067 587 306 832 510
0068 NA NA NA NA
0069 NA NA NA NA
0070 0 78 59 165
0070 0 156 231 364
0070 108 563 165 609

5 Acknowledgements

5.1 Karndeep Singh

Karndeep and I conferred on topics regarding bound-
ing box filtering.

5.2 Piazza

All other references were from Piazza.

University of California, San Diego 6


